Description

These switches are used mainly on machines where the hazardous conditions persist even after the machine has been switched off. Mechanical parts such as pulleys, saw
 blades, etc., could continue to move after the machine is switched off. Thus, the switches can also be used if individual guards are only to be opened under certain conditions.
Versions with mode 1 and 3 (safety outputs active when guard closed and locked) are interlocks with guard locking acc. to ISO 14119; the product is labelled with the symbol shown.

Maximum safety with a single device

 D The NS series switches are conAs a result, the maximum PL e and SIL 3 safety levels can still be achieved through the use of a single device on a guard. This avoids expensive wiring in the field and allows faster installation. Inside the control cabinet, the two electronic safety outputs must be connected to a safety module with OSSD inputs or to a safety PLC.
Series connection of several switches

One of the most important features of the NS series is the possibility of connecting up to 32 sensors in series, while still maintaining the maximum safety levels PL e laid down in EN 13849-1 and SIL 3 acc. to EN 62061. This connection type is permissible in safety systems which have a safety module at the end of the chain that monitors the outputs of the last NS switch.
The fact that the PL e safety level can be maintained even with 32 sensors connected in series demonstrates the extremely secure structure of each single device.

Pizzato Elettrica CS series safety module

Series connection with other devices

The NS series features two safety inputs and two safety outputs, which can be connected in series with other Pizzato Elettrica safety devices. This option allows the creation of safety chains containing various devices. For example, stainless steel safety hinges (HX BEE1 series), RFID sensors (ST series) and door lock sensors (NG series) can be connected in series while still maintaining the maximum PL e and SIL 3 safety levels.

RFID actuators with high coding level

The NS series is provided with an electronic system based on RFID technology to detect the actuator. This allows to provide each actuator with different coding and makes it impossible to tamper with a device by using another actuator of the same series. Millions of different coding combinations are possible for the actuators. They are therefore classified as high level coded actuators, according to EN ISO 14119.

Dustproof

The switch is provided with a through hole for inserting the actuator. Thanks to this unique feature, any dust that enters the actuator hole can always come out on the opposite side instead of remaining inside. Moreover, the lock pin is provided with a diaphragm seal, making the system suitable for critical environments with a high level of dust.

Head and release devices with variable orientation, not detachable

The upper part of the switch, which contains the release devices, can be rotated and is permanently connected to the lower part, which contains the outputs for the electrical connection. After loosening the fastening screws, the individual modules can be rotated in 90° steps. As a result, a single device can be used to realise various configurations without the installation technician needing to concern himself with the correct assembly of various parts.
The fastening screws are provided with protection caps to prevent dirt build-up and thereby simplify cleaning.

Holding force of the locked actuator

 a maximum actuator holding force of $F_{1 \max }=$ 2100 N.

Integrated control devices

The NS series switches are also available in a version with a long housing, that has room for fitting 1 to 4 control devices, with the relevant contact blocks, on the same body of the safety device. This version has the same modular and orientation features as the NS switches.
To meet requirements for a range of uses, a number of different colour and types of control devices can be adopted such as, for example: buttons, emergency stop buttons, indicator lights, selector switches. Button lenses are customizable by laser engraving.
The control devices can be illuminated and protrude only slightly out of the housing thanks to the recessed housing hole.
The result is a compact solution with direct access to control devices without needing to install them separately on the switch panel or in their own housing.

Six LEDs for immediate diagnosis

As the LEDs have been designed for quick immediate diagnosis, the status of each input and output is highlighted by one specific LED. This makes it possible to quickly identify the interruption points in the safety chain, which device is released, which guard is opened and any errors inside the device. All of this at a glance, without needing to decode complex flashing sequences.

Holding force of the unlocked actuator

The inside of each switch features a device which holds the actuator in its closed position. Ideal for all those applications where several guards are unlocked simultaneously, but only one is actually opened. The device keeps all the unlocked guards in their position with a retaining force of approx. 20 N , stopping any vibrations or gusts of wind from opening them.

Function for protecting against recoil forces

If a guard is closed too quickly or with so much force that the recoil would cause it to open again, a special function in the NS switch prevents locking. This function prevents the immediate locking of the guard if the lock signal is applied. This protects the switch against recoil forces that occur during instantaneous locking, thus avoiding possible damage to the device.

Key release device and escape release button

The key release device (auxiliary release) is used to permit unlocking of the actuator only by personnel in possession of the key. The device also functions with no power supply and, once actuated, prevents the guard from being locked.
The escape release button allows actuator release and immediate opening of the guard. Generally used in machines within which an operator could inadvertently become trapped, it faces towards the machine interior, to allow the operator to exit even in the event of a power failure. The button has two stable states and can be freely extended in length with suitable extensions (see accessories). Both devices can be positioned on the four sides of the switch. As a result, it can be installed both towards the interior and towards the exterior of the machine.

Three safety output actuation modes

The device is available with 3 different actuation modes for safety outputs:

- mode 1: safety outputs active with inserted and locked actuator, for machines with inertia; actuator, for machines without inertia;
- mode 3: a first safety output active with actuator inserted and locked and a second safety output active with actuator inserted, for special applications.

Protection against tampering

Each actuator of the NS series is supplied with four snap-on protection caps. Not only do the caps prevent dirt from accumulating and simplify cleaning, they also block access to the fastening screws of the actuator. As a result, standard screws can be used instead of tamper-proof screws.

Jointed actuator for inaccurately closing guards

All NS series actuators are articulated, thereby allowing the actuator pin to be safely guided into the switch through the centring hole. As a result, the actuator and switch do not need to be precisely aligned during installation. In addition, the device can thereby be used on guards with a minimum actuation radius of 150 mm without the actuation pin needing to be angled.

Front and side mounting

Integrated in the housing of the NS series is a hole for inserting the actuator pin. Fixing holes are also provided in the robust body for front and side mounting.
This makes it easier to mount the switch during lateral installation: the switch is directly mounted without needing to rotate the module that
 contains the hole for inserting the actuator pin. The fixing holes can be sealed with the protection caps provided for this purpose. Dirt deposits and tampering attempts are thereby prevented

High protection degree

These devices are designed to be used in the toughest environmental conditions and they pass the IP67 immersion test acc. to EN 60529 They can therefore be used in all environments where the maximum degree of protection is required for the housing. Due to their special design, these devices are suitable for use in equipment subjected to cleaning with high pressure hot water jets. These devices meet the IP69K test requirements according to ISO 20653 (water jets with 100 bar and $80^{\circ} \mathrm{C}$).

External device monitoring

On request, the switch can be supplied with EDM function (External Device Monitoring). In this case, the switch itself checks the proper function of the devices connected to the safety outputs. These devices (usually relays or safety contactors) must send a feedback signal to the EDM input, which checks that the received signal is consistent with the state of the safety outputs.

Selection diagram

Code structure

Operating principle

D
locked actuator with de-energised solenoid, mode 1
E locked actuator with energised solenoid, mode 1
locked actuator with de-energised solenoid, mode 2
locked actuator with energised solenoid, mode 2

L locked actuator with de-energised solenoid, mode 3
locked actuator with energised solenoid, mode 3

Inputs and outputs

2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
1 signalling output O3: actuator inserted
31 signalling output O4: actuator locked 2 solenoid activation inputs IE1, IE2 1 reset input 13
Note:Supplied only together with actuator.
2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
$4 \quad 1$ signalling output O3: actuator inserted 1 signalling output O4: actuator locked 2 solenoid activation inputs IE1, IE2 1 programming / reset input 13
2 safety inputs IS1, IS2
2 safety outputs OS1, OS2
1 signalling output O3: actuator inserted
51 signalling output 04: actuator locked
2 solenoid activation inputs IE1, IE2
1 programming / reset input I3
1 feedback input EDM 15
Note: Not available with mode 3.

Auxiliary release at front and back

AZ release by means of screwdriver at front (1)
ST key release at front ${ }^{\text {(1) }}$
SE key release at front and escape release button at back ${ }^{(1)}$
CE release by means of screwdriver at front and escape release button at back ${ }^{(1)}$
ZZ without release ${ }^{(2)}$
TE
without release at front and escape release button at back ${ }^{(2)}$

SR with front key release and rear remote escape release ${ }^{(3)}$

CR
with front screwdriver release and rear remote escape release ${ }^{(3)}$
(1) Only available for operating principle D, G and L.
(2) Only available for operating principle E, H and M.
(3) For the remote escape release, see page 203.

Output direction, connections

D cable or connector, lateral
S cable or connector, axial

Code structure for actuator

VN NS-F40

Actuator

F40
low level coded actuator
the switch recognises any type F40 actuator
F41 high level coded actuator the switch recognises one single type F41 actuator

Software versions ${ }^{(1)}$

tignaling output
O3: inverted signalling output
O4: inverted signalling output
VS03 O3: fault signalling output
VS04
O3: generates a voltage dip $(0.2 \mathrm{~ms})$ when the device is blocked
(1) Available for non-safety inputs and outputs only.

Release button length

for max. 15 mm wall thickness (standard)
LP30 for max. 30 mm wall thickness
LP40 for max. 40 mm wall thickness
LP50 for max. 50 mm wall thickness

Actuator extraction force

actuator extraction force 20 N (standard)
E36 actuator freely removable
E37 actuator extraction force 40 N

Button configurations

N001 configuration 001

N002 configuration 002
N003 configuration 003
... other configurations on request

Actuator

F40
low level coded actuator VN NS-F40 the switch recognises any type F40 actuator
high level coded actuator VN NS-F41
the switch recognises one single type F41 actuator

Connection type

K integrated connector (standard)
0.2 cable, length: 0.2 m , with M12 connector

2 cable, length: 2 m (standard)

10 cable, length: 10 m

Cable or connector type

A PVC cable $12 \times 0.14 \mathrm{~mm}^{2}$
B PVC cable $8 \times 0.34 \mathrm{~mm}^{2}$, for stand-alone connections ${ }^{(1)}$
E PUR cable, halogen-free, $8 \times 0.34 \mathrm{~mm}^{2}$, for stand-alone connections ${ }^{(1)}$
M M12 connector, 12-pole (standard)
P M12 connector, 8-pole, for stand-alone connections ${ }^{(1)}$
Q M12 connector, 8-pole, for series connection with Y connectors ${ }^{(2)}$
R two M12 connectors (12-pole +12 -pole) ${ }^{(3)}$
S M23 connector, 12-pole ${ }^{(3)}$
T M23 connector, 19-pole ${ }^{(3)}$
(1) without inputs IS1, IS2, I5 and without output O4
(2) without inputs IE2, I3, I5 and without output O3. Only available with "inputs and outputs" in version 3
(3) only for items with integrated control devices

For the complete list of possible combinations please contact our technical department.

Main features

- Actuation without contact, using RFID technology
- Digitally coded actuator
- SIL 3 and PLe also with series connection of up to 32 devices
- Max. actuator holding force: 2100 N
- SIL 3 and PL e with a single device
- Protection degree up to IP67 and IP69K
- 6 signalling LEDs

Quality marks:

EC type examination certificate: M6A0751570029
UL approval:
E131787
TÜV SÜD approval:
Z10 0751570025
EAC approval:
RU C-IT.YT03.B.00035/19

In compliance with standards:

EN ISO 14119, EN 60947-5-3, EN 60947-1, EN 60204-1, EN ISO 12100, EN 60529, EN 61000-6-2, EN 61000-6-3, EN 61508-1, EN 61508-2, EN 61508-3, EN ISO 13849-1, EN ISO 13849-2, EN 62061, EN 61326-1, EN 61326-3-1, EN IEC 63000, ETSI 301 489-1, ETSI 301 489-3, ETSI 300 330, UL 508, CSA C22.2 No. 14, BG-GS-ET-19.

Compliance with the requirements of:

Machinery Directive 2006/42/EC, EMC Directive 2014/30/EC, RED Directive 2014/53/EU,
RoHS directive 2011/65/EU, FCC Part 15.

Features approved by UL

Electrical ratings: 24 Vdc Class 2, $0,25 \mathrm{~A}$ (versions without control devices), 0,3 A (versions with control devices). Input Supplied by 24 Vdc , Class 2 Source or limited voltage limited energy
Input NS side: $24 \mathrm{Vdc}, 0,15 \mathrm{~A}$. Input BN side: $24 \mathrm{Vdc}, 0,048 \mathrm{~A}$ max. (maximum four leds).
Output NS side: 2 output $24 \mathrm{Vdc}, 0,25$ A plus 2 output 24 Vdc , 0,1 A. Output BN side: 24 Vac/dc Class 20,25 A Pilot Duty (maximum four actuators, with maximum six contacts, NO or NC or both) or 0,18 A Pilot Duty (maximum four actuators, with maximum eight contacts, NO or NC or both)
Environmental ratings: Types 1, 4X, 12, 13 (versions without control devices), Type 1 (versions with control devices).

Features approved by TÜV SÜD

Protection degree: IP67, IP69K
Ambient temperature: $-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
PL, category: Cat $2 / 4, \mathrm{PL}$ d/e
SIL: SIL 2/3, SIL CL 2/3
In compliance with standards: EN 60947-5-3:2013
EN 61508-1:2010 (SIL 2 / 3), EN 61508-2:2010 (SIL 2 / 3), EN 61508-3:2010 (SIL $2 / 3$), EN ISO 14119:2013, EN IEC 62061:2021 (max. SIL 3), EN ISO 13849-1:2015 (Cat. 2 / 4, PL d/e), EN ISO 14119:2013.
Complies with machinery directive 2006/42/EC.

Please contact our technical department for the list of approved products.

Technical data

Housing made of glass fibre reinforced technopolymer, self-extinguishing and shock-proof Versions with $12 \times 0.14 \mathrm{~mm}^{2}$ or $8 \times 0.34 \mathrm{~mm}^{2}$ integrated cable, length 2 m , other lengths from 0.5 to 10 m on request
Versions with integrated M12 stainless steel connector, single or double, or with M23 connector
Versions with 0.2 m cable and M12 connector, other lengths from $0.1 \ldots 3 \mathrm{~m}$ on request

Protection degree:

Protection degree with control devices: IP67 acc. to EN 60529
IP69K acc. to ISO 20653 (Protect the cables from direct high-pressure and high-temperature jets) IP65 acc. to EN 60529

General data

| Safety parameters | SIL | PL | Cat. | DC | PFH $_{\mathrm{D}}$ | MTTF $_{\mathrm{D}}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Monitoring function: actuator locked - Mode 1 | 3 | e | 4 | High | $1.23 \mathrm{E}-09$ | 2657 |
| Monitoring function: actuator present - Mode 2 | 3 | e | 4 | High | $1.22 \mathrm{E}-09$ | 1840 |
| Monitoring function: actuator locked - Mode 3 | 2 | d | 2 | High | $1.50 \mathrm{E}-09$ | 2627 |
| Monitoring function: actuator present - Mode 3 | 2 | d | 2 | High | $1.49 \mathrm{E}-09$ | 3987 |
| Dual-channel control for locking function of the actuator | 3 | e | 4 | High | $2.04 \mathrm{E}-10$ | 2254 |
| Single-channel control for locking function of the actuator | 2 | d | 2 | High | $2.04 \mathrm{E}-10$ | 2254 |

Interlock with lock, no contact, coded:
Level of coding acc. to EN ISO 14119:
Mission time:
Ambient temperature:
Max. actuation frequency
with actuator lock and release:
Mechanical endurance:
Max. actuation speed:
Min. actuation speed:
Maximum force before breakage $F_{1 \max }$: Max. holding force $F_{\text {zh }}$: Maximum clearance of locked actuator: Released actuator extraction force:
type 4 acc. to EN ISO 14119
low with F40 actuator
High with F41 actuator
20 years
$-20^{\circ} \mathrm{C} \ldots+50^{\circ} \mathrm{C}$
600 operating cycles/hour
1 million operating cycles
$0.5 \mathrm{~m} / \mathrm{s}$
$1 \mathrm{~mm} / \mathrm{s}$
2100 N acc. to EN ISO 14119
1615 N acc. to EN ISO 14119
4 mm
~ 20 N

Power supply electrical data

Rated operating voltage U
Operating current at U_{e} voltage:
Rated insulation voltage U_{i} :
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}$:
External protection fuse:
Overvoltage category:
Electrical endurance:
Solenoid duty cycle:
Solenoid consumption:
Pollution degree:
24 Vdc $\pm 10 \%$ SELV/PELV
40 mA min.; 0.4 A max. with activated solenoid; 1.2 A with activated solenoid and all outputs at maximum power
32 Vdc
1.5 kV
type gG fuse 2 A or equivalent device III
1 million operating cycles
100% ED (continuous operation)
9 W max.
3 acc. to EN 60947-1

4/I5/EDM
24 Vdc
5 mA

Electrical data of inputs IS1/IS2/I3/IE1/IE2/I4/I5/EDM	
Rated operating voltage $\cup_{e}:$	24 Vdc
Rated current consumption $i_{e 1}:$	5 mA

Electrical data of OS1/OS2 safety outputs

Rated operating voltage $U_{e 2}$:
24 Vdc
Output type:
PNP type OSSD
Maximum current per output I_{e} :
0.25 A

Minimum current per output $I_{\text {m } 2}^{\text {e2 }}$:
0.5 mA

Thermal current $t_{\text {th } 2}$:
0.25 A

Utilization category:
Short circuit detection:
DC13; $U_{e 2}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{e} 2}=0.25 \mathrm{~A}$
Overcurrent protection:
Yes
Internal self-resettable protection fuse:
Yes
1.1 A

Duration of the deactivation impulses at the safety outputs: $<300 \mu \mathrm{~s}$
Permissible maximum capacitance between outputs: $<200 \mathrm{nF}$
Permissible maximum capacitance between output and ground: < 200 nF
Activation time of safety outputs OS1 and OS2
after deactivation of safety inputs IS1, IS2:
Activation time upon unlocking the actuator:
Activation time upon removal of the actuator:
Maximum delay for EDM status change:
typically 7 ms , max. 15 ms typically 7 ms , max. 12 ms typically 120 ms , max. 200 ms 500 ms

Electrical data of O3/O4 signalling outputs

Rated operating voltage $U_{e 3}$:
24 Vdc
Output type:
PNP
Maximum current per output ${ }_{\text {e3 }}$:
Utilization category:
Short circuit detection:
Overcurrent protection:
Internal self-resettable protection fuse:

RFID sensor data

Assured operating distance $S_{\text {ao }}$:
Assured release distance $\mathrm{S}_{\mathrm{ar}}{ }^{\text {ab }}$:
Rated operating distance S_{n} :
Repeat accuracy;
Differential travel:
RFID transponder frequency:
Max. switching frequency:
0.1 A
$D C 13 ; U_{e 3}=24 \mathrm{Vdc}, I_{e 3}=0.1 \mathrm{~A}$
No
Yes
1.1 A

2 mm

6 mm (actuator not locked)
10 mm (actuator locked)
3 mm
$\leq 10 \% \mathrm{~s}_{\mathrm{n}}$
125 kHz
${ }_{1} \mathrm{~Hz}$

Actuation mode of the OS1 and OS2 safety outputs

Mode 1 l
Safety outputs OS1 and OS2 are active when the actuator is inserted and locked.

In case of machines with or without inertia of the dangerous elements.
Safety category of the safety outputs: PL e, SIL 3.

Mode 2

Safety outputs OS1 and OS2 are active when the actuator is inserted.

In case of machines without inertia of the dangerous elements.
Safety category of the safety outputs: PL e, SIL 3.

Mode 3

Safety output OS1 is active when the actuator is inserted and locked and IS1 is active. Safety output OS2 is active when the actuator is inserted and IS2 is active.

In case of machines with or without inertia of the dangerous elements.
Safety category of the safety outputs: PL d, SIL 2.

Selection table for switches with high level coded actuators

Selection table for switches

To order a product with lateral connection replace character \mathbf{S} with character \mathbf{D} in the order codes shown above. Example: NS D4AZ1SMK \rightarrow NS D4AZ1DMK To order a product with EDM input replace number $\mathbf{4}$ with number $\mathbf{5}$ in the codes shown above. Example: NS D4AZ1SMK \rightarrow NS D5AZ1SMK Legend: \downarrow interlock with lock monitoring acc. to EN ISO 14119

Selection table for actuators

The use of RFID technology in NS series devices makes them suitable for several applications. Pizzato Elettrica offers two different versions of actuators, in order to best suit customers' specific needs. Type F40 actuators are all encoded with the same code. This implies that a device associated with an actuator type F40 can be activated by other actuators type F40.
Type F41 actuators are always encoded with different codes. This implies that a device associated with an actuator type F41 can be activated only by a specific actuator. Another F41 type actuator will not be recognised by the device until a new association procedure is carried out (reprogramming). After reprogramming, the old actuator F41 will no longer be recognized.
Reprogramming of the actuator can be performed repeatedly.

Complete safety system

The use of complete and tested solutions guarantees the electrical compatibility between the NS series switches and the safety modules from Pizzato Elettrica, as well as high reliability. The switches have been tested with the modules listed in the adjacent table.

NS series switches can be used as individual devices provided that the safety outputs be evaluated by a Pizzato Elettrica safety module (see table for combinable safety modules).

Possibility of series connection of multiple switches for simplifying the wiring of the safety system, whereby only the outputs of the last switch are evaluated by a Pizzato Elettrica safety module (see table with compatible safety modules). Each NS series switch is provided with two signalling outputs which are activated when the guard is closed (O3) or locked (O4). Depending on the specific requirements of the system that has been realised, the signals of the signalling outputs can be evaluated by a PLC.

Switches	Compatible safety modules	Safety module output contacts		
		Instantaneous safety contacts	Delayed safety contacts	Signalling contacts
NS ••••1•••	CS AR-05••••	3NO	1	1NC
	CS AR-06••••	3NO	1	1NC
	CS AR-08••••	2NO	1	1
	CS AT-0•••••	2NO	2 NO	1NC
	CS AT-1•••••	3NO	2NO	1
	CS MP••••••		see page 369	
	CS MF••••••		see page 401	

All NS series switches can be connected, provided that compatibility is checked, to safety modules or safety PLCs with OSSD inputs.

Possibility of series connection of multiple switches for simplifying the wiring of the safety system, whereby only the outputs of the last switch are evaluated by a Pizzato Elettrica safety module of the CS MP series. Both the safety-relevant evaluation and the evaluation of the signalling outputs are performed by the CS MP series.
The examples listed above refer to applications with NS $\bullet \bullet \bullet \bullet 1 \bullet \bullet \bullet$.

Internal wiring diagram

LED Function

PWR	Power supply / self-diagnosis
IN	status of safety inputs
OUT	status of safety outputs
ACT	actuator state
LOCK	actuator locked
EDM	state of EDM inputs (NS $\bullet 5 \bullet \bullet 1 \bullet \bullet \bullet$)

The diagram on the side represents the 7 logic functions which interact inside the device.
Function f0 is a basic function and includes the monitoring of the power supply as well as internal, cyclical tests. Function $f 1$ monitors the status of the device inputs, whereas function $f 2$ monitors the presence of the actuator within the detection areas of the switch.
Function $f 4$ checks the actuator lock condition.
Function f 3 is intended to activate or deactivate the safety outputs and check for any faults or short circuits in the outputs.
In the EDM versions, the f5 function verifies the consistency of the EDM signal during safety output state changes.
The safety-related function, which combines the sub-functions mentioned above, activates the safety outputs according to the chosen operating mode:

- Both safety outputs OS1/OS2 for switches in mode 1 are activated only if both IS1/IS2 safety inputs are active and the actuator is inserted and locked;
- Both safety outputs OS1/OS2 for switches in mode 2 are activated only if both IS1/IS2 safety inputs are active and the actuator is inserted;
- The safety output OS1 for switches in mode 3 is activated only if the IS1 safety input is active and the actuator is inserted and locked, whereas the safety output OS2 is activated only if the IS2 safety input is active and the actuator is inserted.
The f6 function verifies the coherence of the enable/disable signals of the actuator lock command.
The status of each function is displayed by the corresponding LED (PWR, IN, OUT, ACT, LOCK, EDM), in such a way that the general device status becomes immediately obvious to the operator.

Actuation sequence in mode 1

The switch is supplied with power (PWR LED on, green), the IS1 and IS2 inputs are enabled (IN LED on, green), the OS1 and OS2 safety outputs are disabled (OUT LED off). The actuator is outside of the actuation zone (LED ACT off).

The IE1, IE2 inputs can be used to lock the actuator (LOCK LED on, green). The OS1 and OS2 safety outputs are enabled (OUT LED on, green). The O4 signalling output is activated at the same time. The safe actuation area is extended in order to allow greater play for the actuator.

The IE1, IE2 inputs can be used to unlock the actuator (LOCK LED off). The switch disables the OS1 and OS2 safety outputs and turns off the OUT LED. The O4 signalling output is deactivated at the same time. The safe actuation area returns to the initial values.

When the actuator leaves the actuation limit area, the device turns off the ACT LED and the O3 signalling output.

Actuation sequence in mode 2 and mode 3

In contrast to the above mode 2 description, the safety outputs OS1 and OS2 are activated when the actuator is detected, and deactivated when the actuator is no longer detectable, in mode 3, the OS1 safety output is active with inserted and locked actuator and IS1 active, the OS2 safety output is active with inserted actuator and IS2 active.
Operating states

PWR LED	$\underset{\text { LED }}{\text { IN }}$	$\begin{aligned} & \text { OUT } \\ & \text { LED } \end{aligned}$	$\begin{aligned} & \text { ACT } \\ & \text { LED } \end{aligned}$	$\begin{gathered} \text { LOCK } \\ \text { LED } \end{gathered}$	$\begin{aligned} & \text { EDM } \\ & \text { LED (a) } \end{aligned}$	Device state	Description
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	OFF	Device switched off.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	POWER ON	Internal tests upon activation.
-	\bigcirc	\bigcirc	*	*	-	RUN	Safety inputs of the device not active.
\bigcirc	\bigcirc	*	*	*	*	RUN	Activation of safety inputs.
\bigcirc	©	\bigcirc	*	*	*	RUN	Safety inputs incoherence. Recommended action: check for presence and/or wiring of inputs.
\bigcirc	*	*	*	\cong	*	RUN	Incoherence of solenoid activation inputs IE1, IE2. Recommended action: check for presence and/or wiring of inputs.
\bigcirc	*	*	*	$\overline{\widehat{\widehat{0}}}$	*	RUN	Auxiliary release activated. Deactivate the auxiliary release to lock the actuator
-	*	*	\bigcirc	*	*	RUN	Actuator in safe area. O 3 signalling output active.
-	*	*	\bigcirc	-	\bigcirc	RUN	Actuator in safe area and locked; O 3 and O 4 outputs active.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	RUN	Mode 1 Activation of safety inputs IS1, IS2. Actuator in safe area and locked. O3, O4, OS1 and OS2 outputs active.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	*	\bigcirc	RUN	Mode 2 Activation of safety inputs IS1, IS2. Actuator in safe area. O3, OS1 and OS2 outputs active.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	RUN	Mode 3 Actuator present, guard closed and locked, IS1 enabled, IS2 disabled, OS1 enabled, OS2 disabled
\bigcirc	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	RUN	Mode 3 Actuator present, guard closed and not locked, IS1 and IS2 enabled, OS1 disabled, OS2 enabled
$\bar{\Xi}$	*	*	*	*	*	RUN	Rapid flashing: supply voltage too high. Slow flashing: temperature outside admissible range
\bigcirc	*	$\widehat{\widehat{®}}$	*	*	*	ERROR	Error on safety outputs. Recommended action: check for any short circuits between the outputs, outputs and ground or outputs and power supply, then restart the device.
\bigcirc	\bigcirc	\bigcirc	©	\bigcirc	\bigcirc	ERROR	Actuator detection error. Check the physical integrity of the device and, in case of failure, please replace the entire device. If undamaged, realign the actuator with the switch and restart the device.
\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	ERROR	Internal error. Recommended action: restart the device. If the failure persists, replace the device.
\bigcirc	*	\bigcirc	*	*	\bigcirc	RUN	EDM signal active (external relay off) ${ }^{\text {a }}$
-	-	-	-	-	\bigcirc	RUN	EDM signal not active (external relay on) ${ }^{\text {a }}$
-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\cong	ERROR	Error in the EDM ${ }^{\text {a }}$ function

[^0]
External device monitoring (EDM)

The NS $\bullet 5 \bullet \bullet 1 \bullet \bullet$ version, in addition to maintaining the operating and safety characteristics of the NS series, allows control of forcibly guided NC contacts of contactors or relays controlled by the safety outputs of the switch itself. As an alternative to the relays or contactors you can use Pizzato Elettrica expansion modules CS ME-03 (see page 359). This check is carried out via the EDM input (External Device Monitoring as defined in EN 61496-1) of the switch.

This version, with the IS safety inputs, can be used at the end of a series of NS switches, up to a maximum number of 32 devices, while maintaining the maximum PL e safety level and acc. to EN ISO 13849-1 and SIL 3 safety level acc. to EN 62061.
This solution allows you to dispense with the safety module connected to the last device in the chain.
If present, the EDM function must be used.

Connections with CS AR-05000 / CS AR-06e00e safety modules
Input configuration with manual start (CS AR-05 ••••) or monitored start (CS AR-06••••)
2 channels / Category 4 / up to SIL 3 / PL e

Connections with CS MFeose0, CS MPeose0 safety modules

The connections vary according to the program of the module
Category 4 / up to SIL 3 / PL e

Application example on page 367.

Series connection of several switches

Monitoring function: actuator locked 2 channels / Category 4 / up to SIL 3 / PL e
Single-channel control for locking function of the actuator 1 channel / Category 2 / up to SIL 2 / PL d

Monitoring function: actuator locked 2 channels / Category 4 / up to SIL 3 / PL e
Dual-channel control for locking function of the actuator 2 channels / Category 4 / up to SIL 3 / PL e

Safety switch internal connections

Versions with connector			Versions with cable		
NS $0^{00000} \mathrm{M} \cdot$ M12 connector, 12-pole	NS 000000 P• M12 connector, 8 -pole stand-alone connection	NS ${ }^{000000}{ }^{\circ}$ - M12 connector, 8 -pole series connection with " Y " connectors	NS 000000A• Cable $12 \times 0.14 \mathrm{~mm}^{2}$ outer diameter 6 mm	NS 00000 B•, NS 000000° Cable $8 \times 0.34 \mathrm{~mm}^{2}$ outer diameter 7 mm	Connection
3	3	3	White	Blue	A2 Supply input 0 V
10	8	8	Purple	Red	IE1 Solenoid activation input
12	5	1	Red-Blue	Purple	IE2 Solenoid activation input
5	2	1	Pink	Black	O3 Signalling output, actuator inserted
9	1	5(b)	Red	/	O4 Signalling output, actuator inserted and locked
8	6	/	Grey	purple-white	I3 Actuator programming input / reset
1	1	1	Brown	Brown	A1 Supply input +24 Vdc
2	1	2	Blue	1	IS1 Safety input
6	1	6	Yellow	1	IS2 Safety input
11	1	1	Grey-Pink	1	I5 EDM input (a)
4	4	4	Green	Red-White	OS1 Safety output
7	7	7	Black	Black-White	OS2 Safety output
					(a) Available for NS $\bullet 5 \bullet \bullet 1 \bullet \bullet \bullet$ version only (b) Available for 8-pole connector, not available for the end of a chain with Y connectors

Series connection

To simplify series connections of the devices, various M12 connectors are available that allow complete wiring.
This solution significantly reduces installation times while at the same time maintaining the maximum safety levels PL e and SIL 3 for the interlocking function.
For further information see page 426.

Switch with integrated control device unit for 1 device

Internal connections (versions with integrated control device unit for 1 device)

	Connection	
	A1	Supply input +24 Vdc
	A2	Supply input 0 Vdc
	IS1	Safety input
	OS1	Safety output
	IS2	Safety input
	OS2	Safety output
	IE1	Solenoid activation input for double channel mode
	IE2	Solenoid activation input for double channel mode
	03	Signalling output, actuator inserted
	04	Signalling output, actuator inserted and locked
	13	Actuator programming input / reset
	15	EDM input (a)
	14	Solenoid activation input for single channel mode

[^1]

Switch with integrated control device unit for 2 devices

	NS *eeosSRK-N115		
	Description	Colour	Diagram
$\begin{aligned} & - \\ & \stackrel{\circ}{J} \\ & 0 \end{aligned}$	Illuminated button, spring-return 1 NO	white	
$\begin{aligned} & \text { N } \\ & \text { © } \\ & \text { D } \\ & \hline \end{aligned}$	Illuminated button, spring-return 1NO		
º 0 0 0 0	$1 \times$ M12, 12-pole + $1 \times$ M12, 8-pole axial	1	

Internal connections (versions with integrated control device unit for 2 devices)

	Connection	
	A1	Supply input +24 Vdc
	A2	Supply input 0 Vdc
	IS1	Safety input
	OS1	Safety output
	IS2	Safety input
	OS2	Safety output
	IE1	Solenoid activation input for double channel mode
	IE2	Solenoid activation input for double channel mode
	03	Signalling output, actuator inserted
	04	Signalling output, actuator inserted and locked
	13	Actuator programming input / reset
	15	EDM input (a)

(a) Available for NS $\bullet 5 \bullet \bullet 1 \bullet \bullet \bullet$ N $\bullet \bullet \bullet$ version only

Switch with integrated control device unit for 3 devices

Internal connections (versions with integrated control device unit for $\mathbf{3}$ devices)

		Connection
	A1	Supply input +24 Vdc
	A2	Supply input O Vdc
	IS1	Safety input
	OS1	Safety output

(a) Available for $N S \bullet 5 \bullet \bullet 1 \bullet \bullet \bullet-N \bullet \bullet \bullet$ version only (b) For versions with double M12 connector, 12-pole (c) For versions with M23 connector, 19-pole

NS 0000 SRK-N001

NS 0000 SRK-N002 NS 0000 SRK-N193

NS •0000STK-N003

NS ©0000SRK-N174

Switch with integrated control device unit for 4 devices

	NS *eeseSRK-N007		
	Description	Colour	Diagram
$\begin{aligned} & - \\ & \stackrel{\Delta}{\beth} \\ & \text { D } \end{aligned}$	Illuminated button, spring-return 1NO	white	
$\begin{aligned} & \text { N } \\ & \stackrel{0}{\beth} \\ & \text { D } \end{aligned}$	Illuminated button, spring-return 1NO		
$\begin{aligned} & \text { en } \\ & 0 \\ & \text { § } \\ & 0 \end{aligned}$	Illuminated button, spring-return 1NO	green	
$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\Delta}{\beth} \\ & 0 \end{aligned}$	Emergency stop button with rotary release 2NC		
$\grave{0}$ 0 0 0 0	$2 \times$ M12, 12-pole, axial	1	A B

Internal connections (versions with integrated control device unit for 4 devices)

		Connection
	A1	Supply input +24 Vdc
	A2	Supply input 0 Vdc
	IS1	Safety input
	OS1	Safety output
	IS2	Safety input
	OS2	Safety output
	IE1	Solenoid activation input for double channel mode
	IE2	Solenoid activation input for double channel mode
	O3	Signalling output, actuator inserted
	04	Signalling output, actuator inserted and locked
	13	Actuator programming input / reset
	15	EDM input (a)

(a) Available for NS $\bullet 5 \bullet \bullet 1 \bullet \bullet \bullet-N \bullet \bullet$ version only

NS 0000 SRK-N005 NS 0000 SRK-N007 NS ${ }^{00000}$ SRK-N085

Dimensional drawings

Device
NS $\bullet \bullet A Z \bullet \bullet M K$
NS $\bullet \bullet Z Z \bullet \bullet M K$

Device

Device
 NS ••AZ•S•K-N•••
 NS ••ZZ•S•K-N•••

Device

$N S \bullet \cdot S T \bullet S \bullet K-N \bullet \bullet \quad N S \bullet \cdot C E \cdot S \bullet K-N \bullet \bullet \bullet$ $N S \bullet \cdot S E \cdot S \bullet K-N \bullet \bullet \bullet \quad N S \bullet T E \cdot S \bullet K-N \bullet \bullet \bullet$
$Y=47.5 \mathrm{~mm}$ (versions with 3 buttons); $Y=31.7 \mathrm{~mm}$ (versions with 4 buttons)

Output type

M12 connector, axial

Two M12 connectors, axial

M12 connector, lateral

M23 connector, axial

Extensions for release button

Article	Description	Drawing
VN NG-LP30	Metal extension for release button. For max. wall thickness of 30 mm	
VN NG-LP40	Metal extension for release button. For max. wall thickness of 40 mm	
VN NG-LP50	Metal extension for release button. For max. wall thickness of 50 mm	
VN NG-LP60	Metal extension for release button. For max. wall thickness of 60 mm	
VN NG-ERB	Red metal release button	

- Metal extensions can be combined with one another to achieve the desired length.
Do not exceed an overall length of 100 mm between the release button and the switch.
- Use medium-strength thread locker to secure the extensions.

The 2D and 3D files are available at www.pizzato.com

All values in the drawings are in mm

Electrical connector configurations

Two M12 connectors, 12-pole + M12, 5-pole

Two M12 connectors, 12-pole
M23 connector, 19-pole

Technical data of the integrated control devices

General data

Protection degree:
Mechanical endurance:
Spring-return button:
Emergency stop button:
Selector switch:
Key selector switch:

Safety parameter B_{100} :

IP65 acc. to EN 60529
1 million operating cycles
50,000 operating cycles
300,000 operating cycles
50,000 operating cycles
30,000 operating cycles including removal of the key
100,000 (emergency stop button)

Actuating force

Spring-return button:	4 N min	100 N max.
Emergency stop button:	20 N min	100 N max.
Selector switch:	$0.1 \mathrm{Nm} \min$	1.5 Nm max.
Key selector switch:	0.1 Nm min	1.3 Nm max.

Contact blocks of the control devices
Material of the contacts: silver contacts
Contact type:
Self-cleaning contacts with double interruption

Electrical data:

Thermal current $\mathrm{I}_{\text {th }}:$	1 A
Rated insulation voltage $\mathrm{U}_{i}:$	$32 \mathrm{Vac} / \mathrm{dc}$
Rated impulse withstand voltage $\mathrm{U}_{\text {imp }}:$	1.5 kV
LED supply voltage:	$24 \mathrm{Vdc} \pm 15 \%$
LED supply current:	12 mA per LED

Utilization category of the contact block:
Direct current: DC-13

$$
U_{e}(V) \quad 24
$$

$$
I_{e}{ }^{e}(A) \quad 0.55
$$

Signalling contact with spring return:

Direct current: DC13
U (V) 24
$I_{e}(\mathrm{~mA}) \quad 10$
In compliance with standards:
IEC 60947-5-1, IEC 60947-5-5, EN ISO 13850
4. Installation for safety applications:

Always connect the safety circuit to the NC contacts (normally closed contacts) as stated in standard EN 60947-5-1.

Electrical data of M12 connector:

Max. operating voltage:	$32 \mathrm{Vac} / \mathrm{dc}$
Max. operating current:	$1.5 \mathrm{~A} \mathrm{max}$.

Electrical data of M23 connector:
Max. operating voltage:
$32 \mathrm{Vac} / \mathrm{dc}$
Max. operating current:
3 A max.

Accessories	Article Set of two locking keys VF KLB300 Extra copy of the locking keys to be purcha- sed if further keys are needed (standard supply: 2 units). The keys of all switches have the same code. Other codes on request.

Article	Description
VN NG-ERX	AISI 316 stainless steel release button unpainted. Guarantees a high resistance against corrosion and aggressive cleaning.

Lock out device

Article	Description
LK S1D001	Lock out device, mounting on the right side of the switch
LK S1S001	Lock out device, mounting on the left side of the switch
Device made entirely of metal, to be fixed	
on the side of NS switches without any ad-	
ditional plate or support.	
The front slider mechanically closes the	
actuator entry hole and functions as a	
shield for the RFID receiver antenna on the	
switch; thus ensuring an additional level of	
protection against accidental closure of the	
guard and untimely machine restart.	
Allows insertion of up to 5 padlocks with a	
3.5 mm arc diameter.	

Available control devices					
	Description	Colour	Spare part number	Combinable with contacts (1)	Protrusion (x) mm
	Illuminated button, spring-return	White Red Green Yellow Blue	VN NG-AC27121 VN NG-AC27123 VN NG-AC27124 VN NG-AC27125 VN NG-AC27126	$\begin{gathered} 1 \mathrm{NO} \\ (1 \mathrm{NC}) \\ (2 \mathrm{NO}) \\ \text { (1NO+1NC) } \end{gathered}$	3
	Non-illuminated button, spring-return	- Black	VN NG-AC27122	$\begin{gathered} \text { 1NO } \\ (1 \mathrm{NC}) \\ (2 \mathrm{NO}) \\ (1 \mathrm{NO}+1 \mathrm{NC}) \end{gathered}$	3
	Non-laser-markable, illuminated, projecting spring-return push button	- Red	VN NG-AC26018	$\begin{gathered} \text { 1NO } \\ (1 \mathrm{NC}) \\ (2 \mathrm{NO}) \\ (1 \mathrm{NO}+1 \mathrm{NC}) \end{gathered}$	6,1
	Indicator light		VN NG-AC26060 VN NG-AC26061 VN NG-AC26062 VN NG-AC26063 VN NG-AC26064	1	2,7
	Emergency stop button acc. to. EN ISO 13850 Rotary release Push-pull release	$\begin{aligned} & \text { Red } \\ & \text { Red } \end{aligned}$	VN NG-AC26052 VN NG-AC26055	2NC	26,4
	Emergency stop button acc. to. EN ISO 13850 for $2 N C+1$ NO contacts, spring-return ${ }^{(2)}$ Rotary release	- Red	VN NG-AC26056	$2 \mathrm{NC}+1 \mathrm{NO}$ spring-return	26,4
	Illuminated emergency stop button acc. to. EN ISO 13850 Rotary release Push-pull release	$\begin{aligned} & \text { Red } \\ & \text { Red } \end{aligned}$	VN NG-AC26051 VN NG-AC26054	2NC	26,4
	Simple stop button Rotary release Push-pull release	$\begin{aligned} & \text { Black } \\ & \text { Black } \end{aligned}$	VN NG-AC26053 VN NG-AC26057	2NC	26,4
	Illuminated selector switch with handle, with transparent lens for LED	Black Black Black Black	VN NG-AC26033 VN NG-AC26030 VN NG-AC26034 VN NG-AC26031	$\begin{gathered} 1 \mathrm{NO} \\ \text { (1NC) } \\ \text { (2NO) } \\ \text { (1NO+1NC) } \end{gathered}$	16,8
	Key selector switch, 2 positions	$\begin{aligned} & \text { Black } \\ & \text { Black } \\ & \text { Black } \end{aligned}$	VN NG-AC26043 VN NG-AC26040 VN NG-AC26041	$\begin{gathered} 1 \mathrm{NO} \\ \text { (1NC) } \\ (2 \mathrm{NO}) \\ (1 \mathrm{NO}+1 \mathrm{NC}) \end{gathered}$	$\begin{aligned} & 39 \text { (a) } \\ & 14 \text { (b) } \end{aligned}$
-	Closing cap	- Black	VN NG-AC26020	1	2,7
	Fixing key	- Black	VN NG-AC26080	1	1
Legend:	$V_{\text {Maintained }} \quad \nabla$ Spring-eturn ${ }^{\text {K Key ext }}$	ction position	(a) with key	(b) without key	

${ }^{(1)}$ The contacts in brackets are on request. Contact our technical department to verify the effective feasibility of the control device unit with the chosen combination of control devices.
${ }^{(2)}$ The NO contact with spring-return is only activated if the emergency stop button reaches the stop. The signal of the NO contact is captured by analysing the rising edge.
To order buttons with marking
add the marking code indicated in the tables on pp. 165-168 to the article codes of the General Catalogue HMI 2023-2024
Example: Black spring-return button with "O" engraving.
Example: Black spring-return button with
VN NG-AC27122 \rightarrow VN NG-AC27122-L1

[^0]: Legend:
 $O=$ off
 $\bigcirc=o f f$
 $=$ on
 $=$ blinking
 (1) = changing colours

 * = indifferent
 (a) Available for NS $\bullet 5 \bullet \bullet 1 \bullet \bullet \bullet$ versions only

[^1]: (a) Available for $\mathrm{NS} \bullet 5 \bullet \bullet 1 \bullet \bullet \cdot-\mathrm{N} \bullet \bullet$ version only

